- 1. What amount of oxygen, O_2 , (in moles) contains 1.8×10^{22} molecules?
 - A. 0.0030
 - B. 0.030
 - C. 0.30
 - D. 3.0

2. Which compound has the empirical formula with the greatest mass?

- A. C_2H_6
- B. C_4H_{10}
- C. C_5H_{10}
- D. C_6H_6

3. $C_2H_2(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

When the equation above is balanced, what is the coefficient for oxygen?

- A. 2
- B. 3
- C. 4
- D. 5

(1)

(1)

4.	3.0 dm ³ of sulfur dioxide is reacted with 2.0 dm ³ of oxygen according to the equation below.	
	$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	
	What volume of sulfur trioxide (in dm ³)is formed? (Assume the reaction goes to completion and all gases are measured at the same temperature and pressure.)	
	A. 5.0	
	B. 4.0	
	C. 3.0	
	D. 2.0	(1)
5.	The relative molecular mass of aluminium chloride is 267 and its composition by mass is 20.3% Al and 79.7% chlorine. Determine the empirical and molecular formulas of aluminium chloride.	
	(Total 4 m	arks)

6.	Sodium reacts	with water	as follows
v.	Dominin Lacis	with water	as follows.

$2Na(s) + 2H_2O(1)$	\rightarrow 2NaOH(aq) +	$H_2(g)$
---------------------	---------------------------	----------

Sodi	um reacts with water as follows.	
	$2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$	
	g of sodium is allowed to react completely with water. The resulting solution is diluted to cm ³ . Calculate the concentration, in mol dm ⁻³ , of the resulting sodium hydroxide solution.	
••••		
••••		
••••		
••••	(Total 3 n	narks)
(i)	Calcium carbonate is added to separate solutions of hydrochloric acid and ethanoic acid of the same concentration. State one similarity and one difference in the observations you could make.	
		(2)
(ii)	Write an equation for the reaction between hydrochloric acid and calcium carbonate.	(2)
		(2)

(iii)	Determine the volume of 1.50 mol dm ⁻³ of hydrochloric acid that would react with exactly 1.25 g of calcium carbonate.
(iv)	Calculate the volume of carbon dioxide, measured at 273 K and
	1.01×10^5 Pa, which would be produced when 1.25 g of calcium carbonate reacts completely with the hydrochloric acid.
	(Total 9 man
What solute	volume (in dm ³) of 0.30 mol dm ⁻³ NaCl solution can be prepared from 0.060 mol of e?
A.	0.018
B.	0.20
C.	0.018 0.20 0.50
D.	5.0

^	***	/· 1 \			c 1'	1 1 '1	NI OIIO
9.	What amount	(in moles)	is present	ın 2.0 g	g of sodium	hydroxide,	NaOH?

- A. 0.050
- B. 0.10
- C. 20
- D. 80

10. A hydrocarbon contains 90 % by mass of carbon. What is its empirical formula?

- A. CH_2
- B. C_3H_4
- C. C_7H_{10}
- D. C_9H_{10}

(1)

11. Copper can react with nitric acid as follows.

$$3\text{Cu} + \text{HNO}_3 \rightarrow \text{Cu}(\text{NO}_3)_2 + \text{H}_2\text{O} + \text{NO}$$

What is the coefficient for HNO₃ when the equation is balanced?

- A. 4
- B. 6
- C. 8
- D. 10

12. Lithium hydroxide reacts with carbon dioxide as follows.

$$2\text{LiOH} + \text{CO}_2 \rightarrow \text{Li}_2 \text{CO}_3 + \text{H}_2\text{O}$$

What mass (in grams) of lithium hydroxide is needed to react with 11 g of carbon dioxide?

- A. 6
- B. 12
- C. 24
- D. 48

(1)

- **13.** Which solution contains the smallest amount of H⁺ ions?
 - A. 10.0 cm³ of 0.250 mol dm⁻³ HCl
 - B. 20.0 cm³ of 0.250 mol dm⁻³ HCl
 - D. $10.0 \text{ cm}^3 \text{ of } 0.500 \text{ mol dm}^{-3} \text{ HCl}$
 - C. $10.0 \text{ cm} 3 \text{ of } 0.250 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4$

(1)

- **14.** How many hydrogen atoms are contained in one mole of ethanol, C₂H₅OH?
 - A. 5
 - B. 6
 - C. 1.0×10^{23}
 - D. 3.6×10^{24}

15. The percentage by mass of the elements in a compound is

$$C = 72\%$$
, $H = 12\%$, $O = 16\%$.

What is the mole ratio of C: H in the empirical formula of this compound?

- A. 1:1
- B. 1:2
- C. 1:6
- D. 6:1

16. What is the coefficient for O_2 (g) when the equation below is balanced?

$$_C_3H_8(g) + _O_2(g) \rightarrow _CO_2(g) + _H_2O(g)$$

- A. 2
- B. 3
- C. 5
- D. 7

- 17. What amount of NaCl (in moles) is required to prepare 250 cm³ of a 0.200 mol dm⁻³ solution?
 - A. 50.0
 - B. 1.25
 - C. 0.800
 - D. 0.0500

18 100 cm³ of others. C. H. is burned in 400 cm³ of overgon, producing corbon disvide and come

- **18.** 100 cm³ of ethene, C₂H₄, is burned in 400 cm³ of oxygen, producing carbon dioxide and some liquid water. Some oxygen remains unreacted.
 - (a) Write the equation for the complete combustion of ethene.

(2)

(1)

(1)

g.	Calculate the volume of carbon dioxide produced and the volume of oxygen remaining	(b)	
(2) tal 4 marks)	(Tota		
	Write an equation for the formation of zinc iodide from zinc and iodine.	(a)	19.
(1)			
nt	100.0 g of zinc is allowed to react with 100.0 g of iodine producing zinc iodide. Calculate the amount (in moles) of zinc and iodine, and hence determine which reactar is in excess.	(b)	
(3)			
	Calculate the mass of zinc iodide that will be produced.	(c)	
(1) tal 5 marks)	(Tota		

- **20.** Which of the following contains the greatest number of molecules?
 - A. 1 g of CH₃Cl
 - B. 1 g of CH₂Cl₂
 - C. 1 g of CHCl₃
 - D. 1 g of CCl₄

- 21. Which of the following compounds has/have the empirical formula CH₂Q?
 - I. CH₃COOH
 - II. $C_6H_{12}O_6$
 - III. $C_{12}H_{22}O_{11}$
 - A. II only
 - B. III only
 - C. I and II only
 - D. II and III only

(1)

22. Consider the equation below.

$$Fe(s) + S(s) \rightarrow FeS(s)$$

If 10.0 g of iron is heated with 10.0 g of sulfur to form iron(II) sulfide, what is the theoretical yield of FeS in grams?

- A. 10.0 + 10.0
- B. $\frac{87.91 \times 10.0}{55.85}$
- C. $\frac{87.91 \times 10.0}{32.06}$
- $D \qquad \frac{55.85 \times 10.0}{32.06}$

23.	Assuming complete reaction, what volume of 0.200 mol dm ⁻³ 25 0 cm ³ of 0.200 mol dm ⁻³ Ba(OH) ₂ (aq)?	HCl(aq) is required to neutralize
	$25 \text{ 0 cm}^3 \text{ of } 0.200 \text{ mol dm}^{-3} \text{ Ba(OH)}_2(\text{aq})$?	

- A. 12.5 cm^3
- B. 25.0 cm^3
- C. 50.0 cm^3
- D. 75.0 cm³

24. An oxide of copper was reduced in a stream of hydrogen as shown below.

After heating, the stream of hydrogen gas was maintained until the apparatus had cooled.

The following results were obtained.

Mass of empty dish = 13.80 g

Mass of dish and contents before heating = 21.75 g

Mass of dish and contents after heating and leaving to cool = 20.15 g

(a)	Explain why the stream of hydrogen gas was maintained until the apparatus cooled.	
		(1)

(b)	complete reduction of the oxide.	ung
		(3)
(c)	Write an equation for the reaction that occurred.	
		. (1)
(d)	State two changes that would be observed inside the tube as it was heated.	
	7)	
		(2) Total 7 marks)
	C C	
Con	sider the following equation	
	$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(1)$	
Нои	w many moles of $CO_2(g)$ are produced by the complete combustion of 58 g of butane,	
	$I_{10}(g)$?	
A.	4	
B.	8	
C.	12	
D.	16	
		(1)

25.

26. 6.0 moles of Fe₂O₃(s) reacts with 9.0 moles of carbon in a blast furnace according to the equation below.

$$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$$

What is the limiting reagent and hence the theoretical yield of iron?

	Limiting reagent	Theoretical yield of iron
A.	Fe_2O_3	6.0 mol
B.	Fe_2O_3	12.0 mol
C.	carbon	9.0 mol
D.	carbon	6.0 mol

(1)

27. What volume of 0.500 mol dm⁻³ HCl(aq) is required to react completely with 10.0 g of calcium carbonate according to the equation below?

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

- A. 100 cm^3
- B. 200 cm³
- C. 300 cm^3
- D. 400 cm^3

(1)

- **28.** Which is a correct definition of the term *empirical formula*?
 - A. formula showing the numbers of atoms present in a compound
 - B. formula showing the numbers of elements present in a compound
 - C. formula showing the actual numbers of atoms of each element in a compound
 - D. formula showing the simplest ratio of numbers of atoms of each element in a compound

29. The reaction of ethanal and oxygen can be represented by the unbalanced equation below.

$$_$$
 CH₃CHO + $_$ O₂ \rightarrow $_$ CO₂ + $_$ H₂O

- When the equation is balanced using the smallest possible integers, what is the coefficient for O_2 ?
- A. 3
- B. 4
- C. 5
- D. 6

30. The equation for the complete combustion of butane is

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

What is the amount (in mol) of carbon dioxide formed by the complete combustion of three moles of butane?

- A. 4
- B. 8
- C. 12
- D. 24
- 31. Which solution contains the greatest amount (in mol) of solute?
 - A. 10.0 cm³ of 0.500 mol dm⁻³ NaCl
 - B. 20.0 cm³ of 0.400 mol dm⁻³ NaCl
 - C. 30.0 cm³ of 0.300 mol dm⁻³ NaCl
 - D. 40.0 cm³ of 0.200 mol dm⁻³ NaCl

40.0 cm - 61 0.200 mor dm - 14aci

32.	(a)		tage composition by mass of a hydrocarbon is $C = 85.6 \%$ and $H = 14.4 \%$. ulate the empirical formula of the hydrocarbon.	
	, ,			
	(1-)	A 1 (00 a complete of the hydrogon of a temperature of 272 K and a massive of	(2)
	(b)		00 g sample of the hydrocarbon at a temperature of 273 K and a pressure of $\times 10^5$ Pa(1.00 atm) has a volume of 0.399 dm ³ .	
		(i)	Calculate the molar mass of the hydrocarbon.	
			(7)*	
				(2)
		(ii)	Deduce the molecular formula of the hydrocarbon.	
				(1)
				Cotal 5 marks)
33.	How	many	oxygen atoms are present in 0.0500 mol carbon dioxide?	
	A.	3.01	$\times 10^{22}$	
	B.	6.02	$\times 10^{22}$	
	C.	6.02	$\times 10^{23}$	
	D.	1.20	$\times 10^{24}$	